Colunas

Hidrelétricas e o IPCC: 1 – Resumo da série

09/01/2017 17:47

A imagem mostra árvores em decomposição depois da inundação da floresta no lago da usina hidrelétrica de Tucuruí, no Pará. (Foto Alberto César Araújo/Amazônia Real)

 

PHILIP M. FEARNSIDE

As emissões de hidrelétricas tropicais são subestimadas em inventários nacionais de gases de efeito estufa no âmbito da Convenção-Quadro das Nações Unidas sobre Mudança do Clima (UNFCCC), dando-lhes um papel em minar a eficácia de limites, ainda não decididos, sobre emissões.

As emissões de hidrelétricas tropicais são também em grande parte, deixadas fora do Relatório Especial sobre Fontes Renováveis de Energia e Mitigação das Mudanças Climáticas, do Painel Intergovernamental sobre Mudanças Climáticas (IPCC), e foram excluídas de uma revisão das orientações do IPCC sobre zonas úmidas.

O papel das hidrelétricas em inventários de emissões e na mitigação tem sido sistematicamente ignorado.

 

Emissões de barragens tropicais

Barragens da Amazônia produzem gases de efeito estufa, especialmente durante seus primeiros dez anos de operação (e.g., [1-16]). Os números publicados para emissões de hidrelétricas variam muito, mas a maior parte desta variação pode ser explicada por diferenças conhecidas entre as barragens em questão, por omissões conhecidas e por problemas na metodologia de medição, particularmente para os valores baixos.

A existência de incerteza tem sido usada repetidamente como justificativa para não levar as emissões de hidrelétricas em conta. Entre os exemplos desta prática é o atual conjunto de diretrizes do Painel Intergovernamental sobre Mudança Climática (IPCC) para os inventários nacionais, que optou por não para fornecer valores padrão (default) para as grandes fontes de emissões de hidrelétricas através de desgaseificação nas turbinas, de ebulição (bolhas) da superfície do reservatório e de ebulição e difusão no rio a jusante da barragem ([17], Vol. 4, Apêndice 3)[18].

 

NOTAS

[1] Abril, G., Guérin, F., Richard, S., Delmas, R., Galy-Lacaux, C., Gosse, P., Tremblay, A., Varfalvy, L., dos Santos, M.A., Matvienko, B. 2005. Carbon dioxide and methane emissions and the carbon budget of a 10-years old tropical reservoir (Petit-Saut, French Guiana). Global Biogeochemical Cycles 19, GB 4007. doi: 10.1029/2005GB002457.

[2] Delmas, R., Richard, S., Guérin, F., Abril, G., Galy-Lacaux, C., Delon, C., Grégoire, A. 2005. Long term greenhouse gas emissions from the hydroelectric reservoir of Petit Saut (French Guiana) and potential impacts, In: Tremblay, A., Varfalvy, L., Roehm, C., Garneau, M. (Eds.), Greenhouse Gas Emissions: Fluxes and Processes. Hydroelectric Reservoirs and Natural Environments, Springer-Verlag, New York, NY, E.U.A., p. 293-312.

[3] Fearnside, P.M. 2002. Greenhouse gas emissions from a hydroelectric reservoir (Brazil’s Tucuruí Dam) and the energy policy implications. Water, Air and Soil Pollution 133: 69-96. doi: 10.1023/A:1012971715668.

[4] Fearnside, P.M. 2005. Do hydroelectric dams mitigate global warming? The case of Brazil’s Curuá-Una Dam. Mitigation and Adaptation Strategies for Global Change 10: 675-691. doi: 10.1007/s11027-005-7303-7.

[5] Fearnside, P.M. 2008. Hidrelétricas como “fábricas de metano”: O papel dos reservatórios em áreas de floresta tropical na emissão de gases de efeito estufa. Oecologia Brasiliensis 12: 100-115. doi:10.4257/oeco.2008.1204.12

[6] Fearnside, P.M. 2009. As hidrelétricas de Belo Monte e Altamira (Babaquara) como fontes de gases de efeito estufa. Novos Cadernos NAEA 12(2): 5-56.

[7] Fearnside, P.M. 2013. Climate change and the Amazon: Tropical dams emit greenhouse gases. ReVista, Harvard Review of Latin America 12(2): 30-31.

[8] Fearnside, P.M., Pueyo, S.. 2012. Underestimating greenhouse-gas emissions from tropical dams. Nature Climate Change 2: 382–384. doi: 10.1038/nclimate1540.

[9] Galy-Lacaux, C., Delmas, R., Jambert, C., Dumestre, J.-F., Labroue, L., Richard, S., Gosse, P. 1997. Gaseous emissions and oxygen consumption in hydroelectric dams: A case study in French Guyana. Global Biogeochemical Cycles 11: 471-483. doi: 10.1029/97GB01625.

[10] Galy-Lacaux, C., Delmas, R., Kouadio, J., Richard, S., Gosse, P. 1999. Long-term greenhouse gas emissions from hydroelectric reservoirs in tropical forest regions. Global Biogeochemical Cycles 13: 503-517. doi: 10.1029/1998GB900015.

[11] Guérin, F., Abril, G., Richard, S., Burban, B., Reynouard, C., Seyler, P., Delmas, R. 2006. Methane and carbon dioxide emissions from tropical reservoirs: Significance of downstream rivers. Geophysical Research Letters 33, L21407. doi: 10.1029/2006GL027929.

[12] Gunkel, G. 2009. Hydropower – A green energy? Tropical reservoirs and greenhouse gas emissions. CLEAN – Soil, Air, Water 37: 726-734. doi: 10.1002/clen.200900062.

[13] Kemenes, A., Forsberg, B.R., Melack, J.M. 2007. Methane release below a tropical hydroelectric dam. Geophysical Research Letters 34, L12809. doi: 10.1029/2007GL029479.55.

[14] Kemenes, A., Forsberg, B.R., Melack, J.M. 2008. As hidrelétricas e o aquecimento global. Ciência Hoje 41(145): 20-25.

[15] Kemenes, A., Forsberg, B.R., Melack, J.M. 2011. CO2 emissions from a tropical hydroelectric reservoir (Balbina, Brazil). Journal of Geophysical Research 116, G03004. doi: 10.1029/2010JG001465.

[16] Pueyo, S., Fearnside, P.M. 2011. Emissões de gases de efeito estufa dos reservatórios de hidrelétricas: Implicações de uma lei de potência. Oecologia Australis 15: 114-127. doi: 10.4257/oeco.2011.1502.02

[17] IPCC (Intergovernmental Panel on Climate Change). 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. (Eds.), Institute for Global Environmental Strategies (IGES), Kanagawa, Japão. [Disponível em: http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html].

[18] Isto é uma tradução parcial atualizada de Fearnside, P.M. 2015. Emissions from tropical hydropower and the IPCC. Environmental Science & Policy50: 225-239. http://dx.doi.org/10.1016/j.envsci.2015.03.002. As pesquisas do autor são financiadas por: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (processos nº305880/2007-1, nº304020/2010-9, nº573810/2008-7, nº575853/2008-5), Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM) (processo nº 708565) e Instituto Nacional de Pesquisas da Amazônia (INPA) (PRJ13.03).

 

Leia a última série: A Hidrelétrica de São Luiz do Tapajós

Philip M. Fearnside é doutor pelo Departamento de Ecologia e Biologia Evolucionária da Universidade de Michigan (EUA) e pesquisador titular do Instituto Nacional de Pesquisas da Amazônia (Inpa), em Manaus (AM), onde vive desde 1978. É membro da Academia Brasileira de Ciências e também coordena o INCT (Instituto Nacional de Ciência e Tecnologia) dos Serviços Ambientais da Amazônia. Recebeu o Prêmio Nobel da Paz pelo Painel Intergovernamental para Mudanças Climáticas (IPCC), em 2007. Tem mais de 500 publicações científicas e mais de 200 textos de divulgação de sua autoria que estão disponíveis neste link

Notícias relacionadas

Deixe seu comentário

Leitores e leitoras, seus comentários são importantes para o debate livre e democrático sobre os temas publicados na agência Amazônia Real. Comunicamos, contudo, que as opiniões são de responsabilidade de vocês. Há moderação e não serão aprovados comentários com links externos ao site, ofensas pessoais, preconceituosas e racistas. Agradecemos.

Translate »